数学教学设计

时间:2023-03-14 12:24:25
数学教学设计模板

数学教学设计模板

在教学工作者开展教学活动前,常常要写一份优秀的教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。怎样写教学设计才更能起到其作用呢?下面是小编收集整理的数学教学设计模板,欢迎大家借鉴与参考,希望对大家有所帮助。

数学教学设计模板1

★目标预设

一、知识与能力

借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量

二、过程与方法

1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观

乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用

★教学重难点

一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量

二、难点:负数的意义,理解具有相反意义的量。

★教学准备

带有负数的实例若干

★预习导学

在生活、生产、科研中,经常遇到数的表示与数的运算的问题。例如,

⑴天气预报20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红 ……此处隐藏18097个字……化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1 把下列各式化成最简二次根式:

例2 把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

《数学教学设计模板.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式